
N94-21342
THE THREE-DIMENSIONAL EVENT-DRIVEN GRAPHICS ENVIRONMENT

(3D-EDGE)

By Jeffrey Freedman, Roger Hahn and David M. Schwartz

Stanford Telecom

7501 Forbes Blvd

Seabrook, MD 20706

(301) 464-8900

ABSTRACT-- Stanford Telecom developed the
Three-Dimensional Event-Driven Graphics En-
vironment (3D-EDGE) for NASA Goddard Space
Flight Center's (GSFC) Communications Link
Analysis and Simulation System (CLASS). 3D-
EDGE consists of a library of object-oriented
subroutines which allows engineers with little or

no computer graphics experience to program-
matically manipulate, render, animate, and ac-

cess complex three-dimensional objects.

I. INTRODUCTION

3D-EDGE was developed to allow program-

mers with iittle or no computer graphics experi-

ence to incorporate three dimensional solid ob-

jects into their programs. Other programmatic

graphic interfaces [ 1,2] such as PHIGS require

the user to have an in-depth knowledge of the

type of object being modeled and how it is

manipulated. This limits programmatic access of

three-dimensional objects to people who have

three dimensional computer graphics training.

3D-EDGE, on the other hand, uses very simple

commands to manipulate, access and render the

solid model. The user only needs to learn a few

3D-EDGE commands to use any three dimen-

sional object because 3D-EDGE has the same

generic interface for every object. This allows

the user to access objects without knowledge of
their internal data structure.

II. OVERVIEW

3D-EDGE can incorporate a wide variety of

solid model representations, keeping their inter-

nal structures invisible to the user. Thus, once a

user is familiar with 3D-EDGE, he/she can ma-

nipulate, render, animate and access any object

regardless of its internal configuration.

Figure I shows the 3D-EDGE data hierarchy.

The figure shows the 3D-EDGE data dependen-

cies, and the supporting subroutines for each data

type. The remainder of this section describes

Figure 1 in detail.

Object Instance

Data Subroutines Data Subroutines

Object Key load_object Instance Kay clear__CV

C_jec! ID re_ve_obj ect Instance ID create_instance

dA mpl ay..poi
Class TyI_ I_ RefererctKI

get_pol
Primative Tree O_ject Key ge t_po lygon_

Event List Event Control remove_lruleance

rencIer_inst anceaffable List,_ _lnte__*VFO[ List

\'L Event ID n I ECV

Fig. I. 3D-EDGE Data Hierarchy Diagram

The database contains a description of a three

dimensional object, an associated list of events,

and a set of Points of Interest, (Pors, these are

discussed below). Events control location, ori-

entation, and any other configurable features of

the model. For example, CLASS's model of the

Space Shuttle contains events which control its

location, orientation, the percentage Shuttle doors

are opened, and the gimbal angles of the anten-

nas. The Shuttle doors are opened by changing

an appropriate event's value (e.g. "DOORS

OPEN" event ).

An instance contains a list of Event Control

Variables (ECV's) that specify values for every

event. Since the user never modifies the object

itself, only the instance, multiple instances of the

same object can be controlled simultaneously

This work was supported by NASA Goddard Space

Flight Center under constract NAS 5-31500. 235

PRIGI_t_I PAG£ _ILA_iK NOT FILMI_



while maintaining data integrity and minimizing

memory usage. The user updates the ECV's

through a set of 3D-EDGE subroutines. The

configuration of the instance is calculated only

when the user either renders (graphically dis-

plays the instance of an object) or accesses

information from the instance. Dynamic motion

and animation can be effected by interactively

changing ECV's and re-rendering.
The user accesses information about an in-

stance of an object by calling an appropriate

query routine. The query returns to the user

information which may include, but is not lim-

ited to, a polygonal description of each surface on

the object, a surface color, a surface dielectric

constant, and a PoL A PoI is a location and

direction on an object which moves with the

object. For example, a Pol can be the location

and direction of an antenna boresight, which

automatically moves with the antenna.

Figure 2 shows an overall flow diagram of a

3D-EDGE program. The user first loads an

object from the database. Then one or more

instances of the object are created. The instance

is modified by using the update_ECV subrou-

tine, which changes a particular ECV in an in-

stance. For example, an update_ECV can be

used to open Shuttle doors or to gimbal antennas.

Next, either information about the instance (e.g.

polygonal locations or dielectric constants) may

be accessed or the instance rendered. This pro-

cess can then be repeated or the object is dis-

posed of if it is no longer required.

III. OBJECTS

An object refers to a three dimensional

model. 3D-EDGE is designed to allow easy

programmatic access to these objects. Each

object belongs to a particular class. The class

refers to the underlying solid model description

of the object. For example, the polygon class

(currently the only class supported) refers to

objects made from polygonal surfaces. Addi-

tional proposed classes of objects include de-

scriptions based on extrusion, B-spline and fractal

solid model representations.

A. Hierarchy

Objects are comprised of a set of hierarchi-

cally related components known as primitives.

Primitives are related to one another through

transformation matrices. An example of this

hierarchical structure is a simplified Space Shuttle

object which is comprised of 8 primitives: a

fuselage, a nose, a tail, two cargo bay doors, and

a robotic arm comprised of three parts: a turret,

forearm and clamp, as shown in Figure 3. The

fuselage is the root primitive which has five

children: the nose, tail, doors and turret. The

shoulder in turn has one child, the forearm, and

the forearm one child, the clamp.

I

L Instance

i Load 1Object

1
_lCreate

nstance(s) I

Update
ECV(s)

I
( Getpo, 3

t
I Application Specific 1Analysis Routines

F
CRemoveObiect

I

 Get
Polygons J

Fig. 2. 3D-EDGE Flow Diagram

FUSELAGE

--t NOSE

TAIL

LEFT_DOOR

RIGHT_DOOR

--t TURRET

1__
FOREARM 1

Fig. 3. Simple Shuttle Primitive Hierachy

The use of a hierarchical structure simplifies

the model definition and provides a natural mecha-

nism for specifying the manipulation of the model.

236



If an event is invoked to rotate the turret of the

robotic arm, the rest of the arm moves as well.

This is true for all parent-child pairs. As the

parent moves, so do the children and the children' s

children, on down the line. Thus, by rotating an

object's root primitive the entire object is

effectively rotated in space.

B. Attributes

Attributes are used to define an object's

physical characteristics. Examples of attributes

include color, reflective coefficient, and dielec-

tric constant. An object inherits a set of attributes

from 3D-EDGE based upon the object's class.

An object's attributes are defined within the

object' s database.

C. Inheritance

Inheritance, an important feature in 3D-

EDGE, takes two forms: events and attributes.

Both are inherited from more general levels to

more specific levels. For example, if an object's

root primitive is defined to be "white" in the

database, then the rest of the objedt is considered

to be "white." However, if a particular primitive
has "blue" as the value of its color attribute, that

primitive and any of its descendants will also be

"blue" unless they too re-specify the color at-

tribute.

D. Points of Interest

A Point of Interest ("Pol ") is a location and

direction on a primitive which moves with the

primitive. By using 3D-EDGE's query lan-

guage, the location and direction of the PoI may

be retrieved at run-time. This allows program-

matic use of the information. A program devel-

oped for CLASS uses a PoI to represent the

antenna beam (boresight) of a satellite' s gimbal

antenna. As the antenna moves, so does its

boresight. The Pol information is then used to

control the camera (the user's view) in a real-time

graphics package. The scene is then viewed

from the antenna along its boresight.

IV. EVENTS

Each object has an associated list of events.

Events are used to control and manipulate the

object. They control location, orientation and

any other variable attributes ofthe model. Events

are characterized by the following parameters:

Type, Level, and Order.

This concept of events lies at the heart of 3D-
EDGE because it means that the user needs to

know nothing about how the object is defined in

order to manipulate it. From the user' s perspec-

tive, the type or level of the event is irrelevant.

The event need only be defined for the object and

invoked by the user; 3D-EDGE takes care of the

rest.

A. Event Types

Events may be either simple or complex. For

example, CLASS's model of the Space Shuttle

contains events which control its attitude (orien-

tation in space), the percentage the Shuttle doors

are opened, and the gimbal (rotation) angles of

the antennas. A simple event on the Shuttle
would be a "ROLL". In real terms this means a

rotation of the Shuttle about its positive x-axis. A

complex event would be "OPEN_DOORS"

which it entails rotating two different object

components about their respective rotational axes.

B. Event Levels

Events are defined at three different levels:

the object level, the class level and the system

level. Object level events are object -specific

and as such are defined in the object's database.
Class level events are those that are defined

within 3D-EDGE code but only for a specific

class of objects. System level events are events

which are defined in 3D-EDGE system code for

all objects. The "ROLL" event noted above is a

system level event as it is defined for all objects.

However, the "OPEN_DOORS" event is an ob-

ject level event defined only for the Shuttle.

C. Event Order

Computer graphics algorithms typically use

translation and rotation matrices to manipulate

objects. These matrices must be applied in a set

order to achieve the desired effect. For example,

a translation issued before a rotation will place an

object at a different location than the same rota-
tion issued before the translation.

In 3D-EDGE, the user can specify events in

any order. However, the order in which the

237



events are actually invoked is defined by the 3D-

EDGE system. An example of this is the way

Shuttle antenna gimbal angles are specified. Two

separate angles are necessary to define the posi-

tion of a gimballed antenna: azimuth and eleva-

tion. Mathematically, the order in which the

transformations are performed on the object's

data points is relevant. Therefore, within the
database for the Shuttle the events

"SET_AZIMUTH" and "SET_ELEVATION"

are defined such that they will be performed in

the appropriate order at run-time. However, the

user can update the ECV's in any order and
achieve the same results.

D, Event Control Variables (ECV)

ECV's are used to control events. The ECV's

are specified as either an explicit value or as a

percentage of the event's range. How the ECVis

to be specified is event-dependent. An example

of an event requiring an explicit value is the

"SET_AZIMUTH" event defined above. When

invoking the event, the user could specify an

ECV of 240, which would mean "rotate the

antenna about the appropriate axis two-hundred

forty degrees." The "OPEN_DOORS" event for

the Shuttle is an example of an event whose ECV

is to be specified as a percentage. When invoking

the event, the user could specify an ECV of 50,

which would mean "open the Shuttle bay doors

halfway." The full range of motion of the doors

is defined in the object's database.

V. INSTANCES

The user creates an instance of an object in

order to control, access and render the object at

run-time. The instance and its associated sub-

routines are illustrated in Figure 1. An instance

of an object consists of a pointer to the instance

(called an instance key), an instance identifier, a

pointer back to the object, (called an object key),
and a set of ECV's for all events defined for the

object. It is the instance that is used to either

render an object or access information about the

object.
Since the user never modifies the object it-

self, multiple instances of the same object can be

controlled simultaneously while maintaining data

integrity and minimizing memory usage.

VI. SUBROUTINES

Subroutine calls are the vehicle through which

the 3D-EDGE system routines are accessed.

There are subroutines for loading objects, invok-

ing events, and querying for information about

objects. Interfaces to the subroutines are avail-
able for both C and FORTRAN. One of the

subroutines that allows the user to get informa-

tion about the object is "get_polygons". The

"get_polygons" subroutine returns to the pro-

gram the transformed data points describing the

current configuration of an instance of an object.

By passing a mask which describes the informa-

tion to be extracted, "get_polygons" can be used

to access other information about the object like

dielectric constants and color. Although these

attributes usually remain constant for the object

at any configuration, it is often useful to access

this type of information.

VII. EXAMPLE PROGRAM

Figure 4 contains a sample program. The

program" first loads the Space Shuttle object by

passing the name of the database containing a

model of the Space Shuttle, "shuttle_file," to the

"load_object" subroutine which then returns an

integer object key, "object_key." "object_key"

is then used by the "create_instance" subroutine

to create two different instances of the Shuttle.

"create_instance" is invoked by passing to it the

"object_key," specifying an "instance id" ("DIS-

COVERY" or "COLUMBIA" in this case), and

specifying a load preference. An integer in-

stance key, used to reference the instance in the

remainder of the program, is then passed back.

Once the two objects are instantiated the

program loops 100 times changing the variable i

from 0 to 99. Within the loop, "DISCOVERY",

identified by its instance key, "Discovery_key,"

and "COLUMBIA," identified by its instance

key, "Columbia_key," have their configurations

altered by invoking specific events. Specifically,

"DISCOVERY" has its doors opened, is pitched,

and is yawed by i, i/5, and i respectively. "CO-

LUMBIA" only has its doors opened i'2 percent

of their range of motion. (Note: Since the

"OPEN_DOORS" event is defined with

"HARD_LIMITS" of 0 < x < 100, for any value

238



/* LOAD OBJECT */

object_key -- load_object(shuttle_file);
l* INSTANTIATE SHUTTLE */

Discovery_key = create_instance(object_key,
"DISCOVERY",LOAD_ABSOLUTE);

Columbia_key -- create_instance(object_key,
"COLUMBIA",LOAD_ABSOLUTE);

/* LOOP */

for (i----0;i<100;i++) {
update_ECV(Discovery_key,"OPEN DOORS ",i);
update_ECV(Discovery key, "PITCH ",i/5);
update_ECV(Discovery_key,"YAW",i);
update_ECV(Columbia_key,"OPEN_DOORS",i* 2);
get_polygons(Discovcry_key,VERTEX_NORMAL I

DIELECT, polygon_points_array1,
num_points 1);

get_polygons(Columbia_key,VERTEX_NORMAL I
DIELECT, polygon_points_array2,
num_points2);

process_polygons(polygon_points_array !,
num_points I);

process._polygons(polygon_points_array2,
num_points'2);

}

Fig.4. Sample Program

of i or i'2 > 100, the doors will only be opened

the maximum of 100 percent.) Once all of the

ECV's have been changed, subroutines are called

which will cause the instances' configurations to

be calculated. In this case, the subroutine is

"get_polygons." This subroutine causes the

polygons, their vertex-normals, and their dielec-

tric coefficients to be passed back to the program.

The first call calculates the points specifying the

polygons for "DISCOVERY" and passes back

"num_points 1" points in the

"polygon_points_arrayl" array. Similarly, the

next call to "get_polygons" returns the

"num_points2" points defining "COLUMBIA"

in the array "polygon points_array2." The pro-

gram then calls its own routine

"process_polygons" to do the actual analysis
desired.

VIII. RESULTS

Figure 5a shows a model of the Compton

Gamma Ray Observatory (GRO) satellite which

was incorporated into 3D-EDGE. 3D-EDGE can

render GRO, move it, change its orientation,

gimbal the antennas, and rotate the solar panels.

The solar panels are rotated by first creating an

instance of GRO, and then updating the

"ROTATE_PANELS" EVC. Figure 5b is the

GRO satellite after the solar panels have been
rotated.

Fig. 5a. GRO before "ROTATE_PANELS"

Fig.5b. GRO after "ROTATE_PANELS"

by +50 Degrees

CLASS uses 3D-EDGE in several of its

programs to manipulate and render solid models.

The CLASS Multi-Path Program (MPP) cur-

rently uses 3D-EDGE to control a three dimen-

sional description of the spacecraft it is analyz-

ing. The MPP has a minimal software interface

239



to3D-EDGEbecauseasinglequeryofthemodel
returnsthenecessaryinformation(thedielectric
constantsandlocationsfor eachsurface).The
3D-EDGEgenericinterfacealsoallowstheMPP
tointerchangeablyuseanyspacecraft.Addition-
ally, the CLASS Flight PerformanceSystem
(FPS)uses3D-EDGEfor agraphicaldisplayof
multiplemodelsduringasimulatedShuttlemis-
sion.

Before the development of 3D-EDGE,
CLASSanalysisprogramsthatusedsolidmod-
els had severelimitations. These limitations
includedlongdevelopmenttimes,non-portable
applications,lack of solid modeldataintegrity
betweenprograms,andprogramsthatcouldnot
interchangeablyusedifferentobjects.3D-EDGE
solvestheseproblemswith aneasy-to-usestan-
dardizedgraphicsenvironment.

IX. CONCLUSION
3D-EDGEwasdesignedontheprinciplethat

it ismoreimportantandefficienttospendtimein
thedefinitionof athree-dimensionalmodelthan
in theincorporationof thatmodelintosoftware.
3D-EDGErequiresthatwhenanobject's data-
baseis beingdevelopedtheeventsbe defined
alongwith the solid model descriptionof the
object.However,oncedefined,anobjectcanbe
usedby anyonewith aknowledgeof 3D-EDGE,
even if they have minimal knowledgeof 3D
graphics.Further,by usingabstracteventsand
classesof data,virtually anythingcanbemod-
eledandmanipulatedusingonly a small setof
subroutines.

REFERENCES

[1] T.L.J.Howard,W.T.Hewitt, R.J.Hubbold,
K.M. Wyrwas,A Practical Introduction to

PHIGS and PHIGS PLUS, Addison-Wesley

Publishing Company, 1991.

[2] Starbase Graphics Techniques, Hewlett

Packard Company, 1991

[3] N. Magnenat-Thalmann, and D. Thalmann,

New Trends in Animation and Visualization,

John Wiley and Sons, New York, 1991

[4] J. Freedman, Video Compression, Ph.D.

Dissertation, University of Maryland, May,

1991

[5] J. Freedman, T. Kaplan, "Layered Command

Driven Animation," Proceedings of

SIGGRAPH 1992, July 1992 (In Review)

[6] T. Kim, "Technical Reference for C.L.A.S.S.

Vehicle Multipath Modeling Program,"

Stanford Telecommunications, Seabrook

MD, May, 1991

[7] C. S. Park, Interactive Microcomputer Graph-

ics, Addison-Wesley Publishing Company,

1985

[8] T. Budd, An Introduction to Object-Oriented

Programming, Addison-Wesley Publishing

Company, 1991

[9] J. Freedman, R. Hahn, D. Schwartz, "The

Three Dimensional Event Driven Graphics

Environment (3D-EDGE)," IEEE National

Telesystems Conference, May 1992.

240






